
Dual Objective Oil and Gas Field Development project

Optimization of Stochastic Time Cost Tradeoff Problems

Supplementary File

1. A flowchart describing the memetic algorithm applied to continuous and

stochastic project time-cost optimization problems (STCTP)

2. Equations for Adjusting Metaheuristics Using Fat-Tailed Distributions Adjusted

by Chaotic Sequences and Other Stochastic Sampling

3. Four Additional Time -cost Graphics for Example Project Work-item Time-Cost

Relationships

4. Four Additional Optimization Progress Graphics for Example Project Work-

item Time-Cost Relationships

Citation:

Wood, D.A. Dual objective oil and gas field development project optimization of

stochastic time cost tradeoff problems. Advances in Geo-Energy Research, 2018, 2(1):

14-33 (Supplementary File)

doi: 10.26804/ager.2018.01.02.

1. A flowchart describing the memetic algorithm applied to continuous and

stochastic project time-cost optimization problems (STCTP)

Fig-S1 Flowchart for dual-objective stochastic time cost tradeoff problem (STCTP)

memetic optimization algorithm. Mh refers to metaheuristic. Algorithm applied here using

Microsoft Excel driven by Visual Basic for Applications (VBA) code. this algorithm can be

readily extended to include fuzzy input variables (Wood, 2017).

2. Equations for Adjusting Metaheuristics Using Dynamic Sampling of Fat-Tailed

Distributions Adjusted by Chaotic Sequences and Other Stochastic Sampling

This section includes the equations and their explanations for deriving adjustment factors

from fat-tailed distributions adjusted by chaotic sequences and alternative sampling of

stochastic adjustment factors. This information and methodology expands upon that proposed

by Wood, (2016b).

Each metaheuristic of the memetic algorithm is collaborating in a search for the global best

location within the feasible solution space (i.e., the optimum solution). In doing so it adjusts

the values x of each of the d design variables (i.e., work item durations and costs within the

defined constraint limits of their probability distributions) at each time step (iteration) t of the

algorithm evaluated for a total of T iterations, expressed as equation S1 for iteration t:

 xt = (xi,…,xd)t
 (S1)

Where xt
 represents the solution with specific values xi for each of the d variables, with xi

being specifically the ith variable. The adjustments made to xi involve the calculation and

update at each iteration of the various metaheuristics involved in the memetic algorithm.

Metaheuristic Mh2 of the memetic algorithm generates a subset of new solutions by

repositioning variable values (xi) between, or in the vicinity of, two existing solutions from

the high-ranking subset of solutions (Q) (i.e., exchanging information between those two

existing solutions from the previous iteration). These new solutions replace some of the

lower-ranking and/or mid-ranking solutions in the entire population of ranked and sorted

solutions (N), carried forward from previous iterations. The formula used to generate these

new solutions is expressed as equation S2:

 (S2)

Where:

 refers to entry-wise (matrix) multiplication

 Xhigh represents a solution from the top ranks of high-ranking solutions Q, e.g., one of the

solutions in the top-ten ranked solutions

C is a scaling factor extracted from a Gauss-map (mouse map) chaotic sequence between

defined upper and lower boundaries, CL and CU, respectively, (e.g. CL = 0.1 and CU = 0.3).

F is a stochastic adjustment factor extracted from a simplified fat-tailed distribution (Xmin,

alpha), analogous to a Levy distribution, but not sampled in the form of a random walk (or

Levy flight), but rather from within sampling windows between lower and upper probability

limits, LL and LU, respectively, that are varied dynamically as iterations progress, such that

the far field of randomization is more extensively sampled in the early iterations (to focus the

algorithm on exploration /global search within the solution space) and the near field of

randomization is more extensively sampled in later iterations (to focus the algorithm on

exploitation or local search within the solution space).

Equation S2 is used to generate a new subset of solutions from the high-ranking subset m of

solutions carried forward from the previous iteration. Each Xselect is a solution selected by

roulette-wheel selection from the high-ranking sub-set Q of the full population N. Roulette-

wheel selection is based on comparing a random number drawn from a uniform distribution

(0,1) with the cumulative frequency (cf) of the high-ranking Q solutions from the previous

iteration. The difference between each element i of Xselect and each element i of either the

best solution from the previous iteration (Xbest), or a randomly chosen solution from one of

the highest ranks (e.g., rank#1 to rank#10) (Xhigh), depending on the iteration number reached,

is calculated. That difference is then adjusted by Fi to form the new value of i for Xselectlowrank,

to rank and carry forward to iteration t+1.

In early iterations, to facilitate greater exploration of the solution space, a different C*F

sampled value can be applied to adjust the difference of each element Xi to produce a new

solution. In later iterations, where the emphasis shifts to local searching (exploitation), the

same C*F sampled value is used to adjust the difference of all elements Xi between Xbest or

Xhigh and Xselect to produce a new solution.

Solutions generated through the application of equation S2 (related to Mh2) are coded “2” to

identify them for metaheuristic profiling. As defined this metaheuristic remains prone to

converge prematurely to local optima, when applied in isolation. One way to reduce, but not

totally remove, this tendency is to progressively vary the sampling window of the fat-tailed

distribution from which F is drawn over the series of iterations executed. For example, one

window can begin sampling the fat tail of the distribution (i.e., far-field random values) and

work its way progressively towards more central or near-field random values as iterations

advance. Another window can remain rooted in the fat-tail of the fat-tailed distribution to

encourage bouts of exploration intermittently across all iterations. Using the modulus

function in most coding languages allows for switching between windows in alternate

iterations (e.g. with, for example, VBA coding such as “iteration mod 2 =0”) or intermittently

(e.g. every fifth iteration can switch between sampling windows with coding such as:

“iteration mod 5 = 0”), provides a flexible way to apply the switching of focus. It provides

an effective way of encouraging both global and local searching, and tuning the algorithm to

control at what stage the balance between them should change.

Mh3 generates a subset of modified solutions (coded 3) derived by making minor

adjustments to the twenty-best non-dominated solutions, plus one randomly-selected from the

highest-ranking solutions, recorded from the previous iteration. Either, just one work-item

duration, or several, are modified in the solutions selected. The modified solutions generated

replace some solutions in the N-Q lower ranking solutions of the previous iteration that have

not been replaced in the current iteration. The small adjustments made by Mh3 are driven by

equation S3:

 (S3)

Where:

G is a stochastic adjustment factor which is sampled randomly between defined limits, with

those limits varying dynamically as iterations progress. The width of the limits applied

determines the granularity for a constant population size of samples drawn from it: a wide

range between limits leads to high granularity; a low range between limits leads to a low

granularity.

The dynamic sampling of adjustment factors is a key component of the metaheuristics that

constitute the memetic algorithm deployed. Such stochastic adjustments are made, either by

the calculation of F from fat-tailed distributions using equation S2 (e.g. Mh2, Mh5 and

Mh6), or by the calculation of G from customized sampling windows using equation S3

(e.g., Mh3), and form part of several of the metaheuristics included in the memetic algorithm.

1.1 Dynamic Sampling of Fat-tailed Distribution Adjusted Chaotically

A fat-tailed distribution, approximating a Levy distribution, can be generated by equation S4

or equation S5.

F(u) = Xmin * (u)^
(-1/alpha) (S4)

F(u) = Xmin * (1-u)^
(-1/alpha)

 (S5)

Where,

u is a uniform distribution of random numbers [0,1] enabling the distribution to be easily

generated and sampled.

Xmin is the starting (minimum) value from which the distribution emanates. This can be 1 or

a value close to one, representing the minimum granularity to which the adjustment factor

derived from it converges (e.g., a value in the range 1.01 to 1.05 is often a more useful value

than 1 for generating adjustment factors to use in optimization searches).

alpha is an index, analogous to the Levy index of stability. For the more complex

mathematical formulation of the Levy distribution, 0< alpha <2, with alpha = 1 being the

closed Cauchy distribution, alpha = 2 being the closed Gaussian or normal distribution, and

all other values of alpha in the stable range leading to open distributions with infinite

variance and their characteristically fat or heavy tails (i.e., power-law tails approximating

1/(u^1+alpha)).

 In the simplified fat-tailed distributions generated by equations S4 and S5, values of

alpha >2 can be meaningfully applied. For values of alpha =3 and Xmin =1.05 the far field of

the fat tail frequently includes values in the 2 to 10 range, with just a few values extending

into the 10 to 100 range, and beyond. For values of alpha =5 and Xmin =1.05 the fat tail

frequently includes values in the 2 to 4 range, with a just few values extending into the 5 to

10 range, and beyond. For values of alpha =10 and Xmin =1.05 the fat tail frequently includes

values in the 1 to 2 range, with a just few values extending into the 2.5 to 3 range and

beyond. The wide range of values in the fat-tailed distribution sampled by the alpha =3 and

Xmin =1.05 (Fig-S2) makes it suitable for adjustment-factor sampling (e.g., for F in equation

S2 for Mh2, Mh5 and Mh6) with a scaling factor applied. Equation S4 generates the same

distribution as equation S5, but in an inverted form, with both distributions having fat-tails. It

is equation S4 that is used here, although it is straightforward to code with either. Fig-S1

illustrates a distribution generated using equation S4 and suggests conceptually how that

distribution might be effectively sampled to generate adjustment factor F for Mh2 and other

metaheuristics.

In order to sample the distributions established from equations S4 and S5 between an upper

and lower limit sampling, the equations are executed with constrained values of u, i.e. as a

uniform random number u[LLt, ULt], which are the lower and upper limits of the sampling

window specified for iteration t.

Fig-S2. A fat-tailed distribution, approximating a Levy distribution, sampled by Mh2 of the

memetic algorithm with the sampling window expanding as iterations progress. Also,

alternate iterations apply only the initial sampling window such that a wide range of values

from the far field of the fat tail of that distribution encourage exploration of the solution

space. (-1/α) is the exponential index for the distribution. u is a uniform distribution of

random numbers [0,1]. Note that the horizontal scale is truncated at F(u)=10, whereas

some outlying values extend to F(u)>30. However, the lower limits established for the

sampling windows exclude these extreme values from the samples. This graph is published

in Wood (2016b).

The lower and upper limits of the sampling windows, used in each iteration to sample the fat-

tailed distributions for Mh2 adjustment factors, vary as iterations progress, for example, as

defined by non-linear equation S6 and equation S7:

LLt(applied for iteration t) = LLMin / (h – (t/T)) , which cannot be > LLMax (S6)

ULt(applied for iteration t) = ULMin / (h – (t/T)), which cannot be > ULMax (S7)

Where:

LLMin is the initial lower limit of the sampling window (beginning at iteration 2)

ULMin is the initial lower limit of the sampling window (beginning at iteration 2)

Capping values LLMax and ULMax are applied such that when equations S6 and S7 generate

limits that exceed those maximum values, it is the maximum values that are applied.

t is any specified iteration number within the range of iterations executed by the algorithm

T is the maximum number of iterations executed by the algorithm

h is a scale factor that depends upon the magnitude of T and on how rapidly or slowly the

window limits are required to change. For example, for T=500, h=1.001 and LLMin is 0.01

then LLt is calculated as approximately 0.02, 0.03, 0.2, 0.5, and 0.9 at t = 250, 330, 475, 490

and 495 iteration numbers, respectively; on the other hand, for T=500, h=1.001 and ULMin is

0.3 then ULt is calculated as approximately 0.5, 0.6, 0.75, 0.9, and 1.0 at t = 200, 250, 300,

333 and 350 iteration numbers, respectively.

Fig-S3. Shows the range of F adjustment factor values (min, max and mean) sampled from

the fat-tailed distribution displayed in Fig-S2 at 150 samples per iteration of a 500-iteration

execution of the algorithm. For Mh2 the F adjustment factor applied in equation S2 is

sampled dynamically in this way, with the following sample windows limits applied to

equations S6 and S7: LLMin is 0.01; LLMax is 0.25; ULMin is 0.30; and ULMax is 0.85. Note

how these limits enabled the fat tailed far-field values to be sampled over the first 75% or

so of iterations encouraging more exploration of the solution space during those iterations.

This graph is published in Wood (2016b).

This non-linear scaling is advantageous in keeping the sampling window limits low over the

first 50%, or so, of scheduled iterations, as low limits sample the far-field values more

extensively (Fig-S3). Applying the maximum limit value caps, LLMax and ULMax, at values

between 0.5 and 0.8, or so, also helps to maintain coarse granularity of sampling and to

prevent premature conversion of the algorithm towards local optima.

If the F values sampled in Fig-S3 were to be applied to equation S2 without further scaling,

the impact would be to move the solution variables too frequently beyond their constraint

boundaries; the F values are too large and need to be scaled down. This is achieved by

applying scaling factor C in equation 5, with values sampled in the range 0.1 to 0.3 from a

chaotic sequence (Fig-S4).

Fig-S4. Shows the range of F*C adjustment values (min, max and mean) sampled from the

fat-tailed distribution (see Fig-S2 and Fig-S3) at 150 samples per iteration over a 500-

iteration execution of the algorithm for Mh2 (F and C are the factors applied in equation

S2). Notice that applying the chaos-adjustment factor C not only scales the F*C

adjustment factors applied in equation S2 to be in the range 0.1 to 1.35 (which will prevent

constraint boundaries for the variables being exceeded too frequently), it also introduces

more variability into the sequence and exaggerates the jumps in the sample range from one

iteration to the next. This feature encourages more efficient exploration of the solution

space in which optima are not uniformly distributed. It also encourages a metric to

potentially "jump" out of local optima traps. This graph is published in Wood (2016b).

The chaotic sequence from which factor C (equation S2) is based upon a Gauss map chaotic

sequence sampling the interval 0.1 to 0.3. The formula used is shown in equation S8:

C = exp (- a * u[L, U]2) + b, subject to CL <= C<= CU (S8)

where,

a and b are real coefficients, for which certain values produce chaotic sequences. Values a =

6 and b = minus 0.4 are applied to equation S8 in the example presented.

u[L,U] means a random number drawn from a uniform random distribution between lower

real number value L and upper real number value U.

With the specified a and b coefficients applied in equation S8, values L=0.24 and U=0.34,

generate a chaotic sequence falling predominantly between the desired range of upper and

lower limits required to constrain the chaotic sequence, CL and CU, respectively, (i.e., values

of CL = 0.1 and CU = 0.3). Other values should also be considered as they may provide more

appropriate granularity for certain problems. The values of CL and CU should be selected

and tuned to facilitate an appropriate range of adjustments, which can vary from problem to

problem. For most purposes values of C that adjust the fat-tailed distribution samples to yield

(F*C) values to be within in the range 0.1 to 1.5 (e.g. Fig-S4) are likely to be effective. Such

values prevent too many breaches of constraint boundaries in the variable values generated

using adjustments such as those performed by equation S2, which can slow down algorithm’s

execution times.

1.2 Alternative Dynamic Sampling of Stochastic Adjustment Factors

Sampling fat-tailed distributions with chaotic-sequence adjustments is not the only way that

dynamic non-linear adjustment can be derived stochastically. The adjustment factor G

applied in equation S3, used as part of Mh3 of memetic algorithm (i.e., to modify randomly

selected variable (s) of an existing high-ranking solution to produce a revised solution for the

next iteration) is generated using a different approach to the fat-tailed, chaotic method

described above. G is derived from a series of steps applied to a range of values between (1

minus a small but variable limit GL) and (1 plus a small but variable limit GU) (e.g. Fig-S5).

GL and GU do not have to be symmetrical about unity, but often it makes sense for them to be

so, as it is typically not known, in a specific iteration, whether solution variables should be

increased or decreased to potentially improve the objective function value of a solution.

Fig-S5. Shows the ranges (min, max) of randomly selected adjustment factor values

applied in some of the metaheuristics of the memetic algorithm (e.g. Mh3), i.e., G in

equation S3, to modify existing solutions. The wider ranges sampled in the first 20% of

iterations facilitate both exploration and exploitation of the solution space, whereas the

narrow ranges sampled in the later iterations are targeted more towards exploitation / local

searching. The abrupt changes in the extent of the sampling window in the final 20% of

iterations encourages a metric to potentially "jump" out of local optima traps. This graph

is published in Wood (2016b).

A dynamically-changing, adjustment factor G, sampling variable ranges across tranches of

iterations, is more suited to local searching (exploitation) when the range falls within plus or

minus 10% or so of unity. However, selecting values randomly from wider ranges, such as

the plus or minus 20% range around unity, as applied in the first 100 iterations of the example

shown (Fig-S5) encourages both global (when far-field values are sampled) and local (when

near-field values are sampled) search potential.

The jumps in ranges sampled in the final 20% of iterations (Fig-S5) serve the purpose of

trying to help the algorithm break free from local optima at which it might have become

trapped. Sudden changes in the scale of adjustment to solution variables can sometimes

achieve this. Linking the steps in ranges sampled to iteration numbers is easy to code and

tune. The sloping range limits applied in Fig-S5 between iterations 100 and 400 requires

formulas based upon equation S9 and equation S10:

GL = (Gmin + (h1 * t * h2) (S9)

GU = (Gmax – (h1 * t * h2) (S10)

Where:

GL is the lower limit of range to be sampled

GU is the upper limit of range to be sampled

Gmin is the lower limit starting point for the slope

Gmax is the upper limit starting point for the slope

h1 and h2 are scaling factors depending on T

To create the sloping boundaries to the upper and lower range limits between iteration

numbers t = 100 and t = 400 illustrated in Fig-S5 using equations S9 and S10 the following

values are applied: Gmin = 0.9; Gmax = 1.1; h1 = 0.00001; and h2 = 10. The gradient of these

slopes could be changed by adjusting the scaling factors, which would also need to be

adjusted to cope with high or lower T (total iterations to be executed). Employing such

sloping boundaries and reviewing results using metaheuristic profiles can help to tune the

intervals appropriate for specific problem requirements.

Dynamic sampling of stochastically-derived adjustment factors plays a key role in making the

memetic algorithm developed an effective and flexibly optimization algorithm, enabling its

balance to be tilted more in favor of local or global searching at iteration intervals to suit the

requirements of specific optimization problems.

3. Four Additional Time -cost Graphics for Example Project Work-item Time-Cost

Relationships

Fig S-6. Time-cost trends for work items 1 and 8 of example project for time-cost

relationship 4. Segmental.

Fig S-7. Time-cost trends for work items 1 and 8 of example project for time-cost

relationship 5. V-shaped.

Fig S-8. Time-cost trends for work items 1 and 8 of example project for time-cost

relationship 6. Positive Linear.

Fig S-9. Time-cost trends for work items 1 and 8 of example project for time-cost

relationship 7. Positive Sigmoidal

.

4. Four Additional Optimization Progress Graphics for Example Project Work-

item Time-Cost Relationships

Fig S-10. Example project optimization progress including Pareto frontiers for first and

last iteration and metaheuristic profiles for the first 100 iterations of the memetic

algorithm applying time - cost relationship 2. Negative Sigmoidal.

Fig S-11. Example project optimization progress including Pareto frontiers for first and

last iteration and metaheuristic profiles for the first 100 iterations of the memetic

algorithm applying time - cost relationship 3. U-shaped.

Fig S-12. Example project optimization progress including Pareto frontiers for first and

last iteration and metaheuristic profiles for the first 100 iterations of the memetic

algorithm applying time - cost relationship 6. Positive Linear.

Fig S-13. Example project optimization progress including Pareto frontiers for first and

last iteration and metaheuristic profiles for the first 100 iterations of the memetic

algorithm applying time - cost relationship 6. Positive Sigmoidal.

