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Abstract:
The understanding of flow behavior in rough fractures is essential for many engineering
activities. When the aperture of a rough fracture approaches the mean free path of
fluid molecules, the microflow effect, sometimes also referred to relative rarefaction
effect, relative discrete effect or non-equilibrium effect, becomes pronounced. It was
found often to enhance the flow rate. However, the surface roughness shows completely
contrary influence. In order to clarify the influences of the two factors, a computer
simulation work accompanied with theoretical analyses is conducted. Previous empirical
models for hydraulic aperture which already containing roughness effect are modified with
consideration of the microflow effect. Direct simulation using the lattice Boltzmann method
is conducted on artificially created 2D fractures with random roughness following Gaussian
distribution to reveal the competitive relationship of two effects. The simulation results also
verify modified models. Among them, the one based on Rasouli and Hosseinian’s model
agrees with the simulation on the relationship between hydraulic aperture and mechanical
aperture for both cases with very rough fractures and relatively smooth fractures. Further
investigation confirms that, under various roughness, the ratio of hydraulic aperture over
mechanical aperture shows quantitatively different trends as mechanical aperture decreases.
This phenomenon exists on a relatively wide scale. An equilibrium point of two effects
is also found through analysis of the relationship. The results reveal the mechanism of
microflow in 2D rough fractures and also provide a reference for engineering problems
like the transport of natural gas through microfractures.

1. Introduction
Fractures constitute a complex system in rock masses

which provides an effective pathway for the fluid flow. How-
ever, as fractures are produced both by nature or by human ac-
tivities with various processes, they diverge on properties and
always intersect with each other (Ciezobka et al., 2018; Liu et
al., 2018). Therefore, with intricate networks of fractures, it is
hard to make an effective prediction for the permeability and
other properties of the reservoir. Although discrete fracture
network (DFN) models have been widely used to simulate
the transport in rock masses and some meaningful results
have already been obtained (Cacas et al., 1990; Liu et al.,
2017; Golparvar et al., 2018), typically they are based on
simplifications on elements of the network by assuming that
each single fractures can be explicitly described with a definite

permeability model. In this case, researches on single fractures
are necessary for it provides the foundation of building a
transport process model of rock fractures which can be further
implemented into DFN models to improve the accuracy of
macroscale prediction (Luo et al., 2016).

For the evaluation of permeability of single fractures,
cubic law (CL) is widely used in rock engineering practice.
CL is derived in the case of the flow constrained by two
smooth plates from the Stokes equation, a simplified form of
Navier-Stokes equation (NSE) neglecting inertial term (With-
erspoon et al., 1980; Oron and Berkowitz, 1998). However,
CL doesn’t consider the influence of surface roughness of
fractures, while roughness obviously influences the fluid flow
and solute transport processes in fractures as a lot of literature
has reported (Boutt et al., 2006; Zhao et al., 2018). Attempts
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have been made to modify CL with roughness factors, among
which the mean value and the standard deviation of aperture
distribution of fracture were introduced as parameters (Louis,
1972). Adopting the form of CL, modifications can be ascribed
to accurate evaluation of hydraulic aperture (e), as shown in
Eq. (1):

Q̃ = − e3

12µ
∇p (1)

where e represents hydraulic aperture and it is a function of
mechanical aperture (E), i.e., f(E, . . .); Q̃ is the flow rate of
fracture; µ is the dynamic viscosity of the fluid; and ∇p is the
pressure gradient.

One of remarkable works to establish an explicit expression
for hydraulic aperture was made by Zimmerman et al. (1991).
They built an idealized fracture model with the sinusoidal-
shaped surface to study the effect of roughness with lubrication
theory in details, and an analytical expression of e was
obtained. Under the condition that the wavelength is long and
the amplitude is relatively small compared with aperture size,
a precise e can be given by their model. In later researches,
the ratio between the standard deviation of aperture (σ) and
mechanical aperture (E) is used as a parameter for rough-
ness (Zimmerman and Bodvarsson, 1996). Other than this
roughness indicator, a number of parameters have also been
utilized as quantitative measurements of the roughness. Joint
Roughness Coefficient (JRC) (Barton and Choubey, 1977), Z2

(Myers, 1962) and fractal dimension (Brown, 1995; Cai et al.,
2010) are of the most popular ones. Roughness parameters can
be introduced to a modified form of e, and a summary of these
empirical models has been given in papers (Zhao and Li, 2015;
Wang et al., 2016). Due to the ratio of asperity size relatively
changes over different E or original distance between two
surfaces, nearly all empirical models have included E as a
parameter into their model of e, which means the modified
aperture is affected not only by roughness property but also
by opening state of the fracture. However, as empirical models
have little consideration of specific flow details, when E
changes, the derived e should be checked carefully before
application.

To make a solid investigation on the mechanism of fracture
flow, remarkable simulation works have related flow details
which are influenced by the morphological pattern of fracture
surface with flow conductivity. Also, simulation works can
make compensation for experiments with modeling details
and without measurement errors. As a simplified form of
NSE, Reynolds equation fits for situations with low Reynolds
number. Utilizing the Reynolds equation, it is possible to
reveal the flow behavior through rough fractures (Liu et al.,
2018). However, direct simulation based on NSE is more
accurate for capturing flow details at different conditions. Zou
et al. (2015) used a wavelet analysis technique to decompose
the roughness profile of fracture to several levels, and with
a finite-volume direct simulation of NSE, the formation of
local eddies was investigated when second-level roughness
was included. Their result shows that the secondary roughness
mainly causes the dynamic evolution of eddy flow regions,
which further impacts the effective flow aperture. Lattice

Boltzmann method (LBM) has gained popularity these years
which provides an alternative way to directly solve NSE easily,
and it is also possible to extend its scopes of application due to
the intrinsic advantage inheriting from its physical foundation
(Xu et al., 2006a; Li et al., 2018). As to simulations of fracture
flow, Eker et al. (2006) used LBM to study a series of synthetic
fractures with fractal characters and gave detailed patterns of
the flow field. Credible results were further imported to a
neural network model, which can make extended predictions
for fracture flow in different cases. Through tests of real rock
samples, the 3D rough surface of fractures with self-affine
property was extracted and decomposed, and LBM simulation
reveals the role of different leveled roughness (Wang et al.,
2016). With LBM direct numerical simulation, Zhou et al.
(2018) analyzed the nonlinear flow behavior in fractures when
the sample was sheared. Recent years, with the development
of computational science, the cost of direct simulation for
fracture flow becomes acceptable, so a lot of issues that have
been omitted previously can be approached and investigated
in details, but for researches including flow details in previous
literature, E is usually kept as a constant and its scaling effect
has not been fully investigated.

The heating of exploitation of unconventional resources
brings engineers with new challenges, and a prominent one
of them is the scaling effect. When E decreases to com-
parable size of the mean free path of fluid molecules, the
Knudsen number (Kn, defined as the ratio of the mean free
path over characteristic length, λ/L) may increase and the
flow behaviors deviate from the macroscopic conditions; thus
microflow effects should be considered. For gas flow in porous
media, this issue is well-known as Klinkenberg effect and the
deviation from the macroscopic conditions is not a negligible
quantity any more (Darabi et al., 2012; Wang et al., 2018). Kn
classically divides fluid flow into four regimes: (1) continuum
flow regime (Kn < 0.001); (2) slipping flow regime (0.001 <
Kn < 0.1); (3) transition flow regime (0.1 < Kn < 10); (4)
free molecular flow regime (Kn > 10). For continuum flow
regime, NSE works well and has been widely used in geo-
flows. When the flow steps into slipping regime, NSE still
governs the bulk flow, whereas the slipping velocity at the
boundary should be considered, which makes the boundary
condition inconvenient to deal with. As to the flow in transition
regime, NSE is completely invalid and cannot give a correct
prediction on flow behavior. Thus it needs comprehensive
considerations when handling high Kn flow problems.

Nature fractures and artificially generated fractures com-
monly exist in strata of different sizes and act as main
channels for fluid transport. For specific fluids, it is possible
that Kn goes higher than 0.001 when the size of fracture
scales down. A higher Kn indicates that the flow will deviate
from continuum flow and tend to show microflow behaviors.
In addition, the roughness effect still influences the flow. In
this case, two remarkable effects coupled with each other.
Figuring out the role of two effects is not only meaningful
to engineering activities but also with great scientific values.

Motivated by above issues, this paper intends to make an
investigation on concerned problems, including: (1) a direct
simulation of fracture flow field to obtain microflow patterns
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affected by roughness; (2) the role of E which not only affects
roughness effect, but also strengthens or weakens microflow
effect; (3) the modification of empirical models of hydraulic
aperture when microflow effect is taken into consideration
and their deviations from direct simulation results. In order to
reduce the complexity of modeling and concentrate researches
mainly on roughness and microflow effects, 2D fractures are
chosen to use in this paper.

2. LBM for microflow simulation
For most cases, NSE governs the flow in single fractures

(mass and momentum conservation for incompressible flows):

∇ · u = 0 (2)

∂u

∂t
+∇ · (uu) = −1

ρ
∇p+ ν∇ ·

(
∇u + (∇u)

T
)

(3)

Considering microfractures with limited space, fluid flow
will slip on the boundary, so a credible method is needed
to accurately solve NSE and expediently capture slipping
effect (Zou and He, 1997). With a different nature from
traditional computational fluid dynamics, LBM provides a path
to conveniently make a direct simulation on the fluid flow,
which is not only easily implemented but also has an aptitude
for extensibility of complex conditions (Xu et al., 2003, 2005,
2006b).

The governing equation of LBM is originated from the
Boltzmann equation, which is a basic kinematic conservation
equation in statistical physics. Adopting a special discrete
form of BGK-Boltzmann equation, LBM can be compared
with macroscopic conservation laws through Chapman-Enskog
expansion and it retains particle propagation patterns inherited
from lattice gas automata (LGA). The evolution equation for
LBM reads:

fi (r + ∆tei, t+ ∆t)− fi (r, t)

= − ∆t

τ + 0.5∆t
[fi (r, t)− feqi (r, t)]

(4)

where fi (r, t) is the particle velocity distribution function,
and feqi (r, t) is the local equilibrium velocity distribution
function. For traditional lattice Boltzmann models, feqi (r, t)
has an explicit form as the second order truncation of Maxwell
distribution (Succi, 2001); r, t, ∆x, and ∆t are the position,
time, space step, and time step, respectively; ei is the dis-
cretized velocity of fluid micelle, the subscript i represents the
index for discrete velocity. For two-dimensional simulation of
this work, D2Q9 model with the following discrete velocity is
used:

ei =


(0, 0) i = 0

c
(

cos
[
(i−1)π

2

]
, sin

[
(i−1)π

2

])
i = 1, 2, 3, 4

√
2c
(

cos
[
(2i−1)π

4

]
, sin

[
(2i−1)π

4

])
i = 5, 6, 7, 8

(5)

where c is the characteristic speed and c = ∆x/∆t.
The fluid density (ρ) and velocity (u) are obtained from

moments of the distribution function, and the pressure (p) is
obtained from the state equation.

ρ =
∑
i

fi (6)

u =
1

ρ

∑
i

fiei (7)

p =
ρc2

3
(8)

The intrinsic property of kinetic boundary conditions has
been discussed for flow in microchannels (Zhang et al.,
2018a). Flows within the slip regime and marginally within
the transition regime can be well described cooperating with
a suitable boundary condition. Considering the rough nature
of rock surface, diffuse reflection boundary is very suitable
for microflow in fractures (Zhao et al., 2016; Wang et al.,
2018). Ansumali and Karlin (2002) has derived the discrete
form of diffuse reflection boundary condition which has gained
popularity in LBM simulation:

fi(r, t+ ∆t) =

∑
j |(ej − uw) · n| fj(r, t)∑

j |(ej − uw) · n| feqj (uw, ρw)
feqi (uw, ρw)

while (ei − uw) · n > 0
(9)

As an indicator for the strength of the non-equilibrium or
the microflow effect, a mean Knudsen number (Kn) is defined
for fracture flow as Eq. (10) shows. E is used as characteristic
length, and relaxation time in LBM is related to Kn according
to Tang et al. (2005).

Kn =
λ

L
=

(
8
3π

)−0.5

NE ·∆t
· τ ≈ τ · c

E
(10)

Initially, a mesh will be created according to the maximum
resolution of the fractures, and then indexes with specified
numbers will be attached with mesh grids in order to guide
the LBM evolution (as Fig. 1 shows).

In order to stress the microflow effect and combine results
with engineering, we select a group of physical parameters
of methane gas in the following work. The parameters can
be found in Table A1 in Appendix. Roughness effect coupled
with the microflow effect is investigated under different E. A
self-developed code is used for simulation, and the code has
been well verified in our previous works (Zhang et al., 2017,
2018b).

3. Theoretical analysis of microflow in fractures
Due to the slip velocity caused by the microflow effect

commonly exist at boundaries in a microfracture, a global
modification can be taken on hydraulic models. If roughness
effect singularly influences the flow, a roughness-modified
aperture er will be derived. The roughness-modified aperture
er is a function of E and rough parameters, like σ/E, Z2, JRC,
etc. For two-dimensional fully developed flows in a smooth
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Fig. 1. Binary profile of a 2D fracture for LBM simulation.

channel with a height of er, the bulk flow region is governed
by NSE. If a second-order slip boundary condition is used:

uy=0,y=er = ±A1λ
∂u

∂y
−A2λ

2 ∂
2u

∂y2
(11)

it will lead to the velocity distribution and the flow rate as
follows:

u (y) = − e
2
r

2µ

dp

dx

(
y

er
− y2

e2r
+A1K̂n+ 2A2K̂n

2
)

(12)

Q̃ = − e3r
12µ

dp

dx

(
1 + 6A1K̂n+ 12A2K̂n

2
)

(13)

where K̂n is the Knudsen number defined by roughness-
modified aperture er, as λ/er.

According to Eq. (1), the expression of e modified both by
roughness and the microflow effect is obtained as:

e3 = e3r

(
1 + 6A1K̂n+ 12A2K̂n

2
)

(14)

where A1, A2 are coefficients denoting the first-order and the
second-order terms of the slip boundary, respectively.

Replace K̂n with mean Knudsen number Kn, we get the
form of hydraulic aperture which is a function of E and
roughness parameter.

e3 = e3r

(
1 + 6A1

E

er
Kn+ 12A2

E2

e2r
Kn

2
)

(15)

If Kn decreases to 0, the flow is ideally continuum. Then
e regress to the roughness-modified one, er = f(E, . . .). As
Kn increases, the correcting part gets larger, and greater flow
rate will be obtained. The value of A1, A2 suggested by
Karniadakis et al. (2006) is A1 = 1.0 and A2 = -0.5, we adopt
these two values for the following research as an attempt.
Using σ/E as roughness factor, then the explicit expression
of the relationship between e and E is shown as Eq. (16):

e

E
= f

( σ
E

)
·

(
1 +

6A1Kn

f
(
σ
E

) +
12A2Kn

2

f
(
σ
E

)2
) 1

3

(16)

Fig. 2 shows the microflow-modified relationship between
e and E. The initial form of selected empirical models is
listed in Table A2 in Appendix (Patir and Cheng, 1978;
Renshaw, 1995; Zimmerman and Bodvarsson, 1996; Rasouli
and Hosseinian, 2011). Keeping the Knudsen number Kn
constant, all curves denote that e/E drops with the increase of
σ/E (as Fig. 2(a) shows). With a higher value of Kn, e/E is
larger which indicates more fluid transports through the rough
fracture. Empirical models are also used to demonstrate the
dependence on Kn (as Fig. 2(b) shows). With the increase
of Kn, e/E is also getting larger. If a fracture is rougher,
with a larger value of σ/E, then e/E becomes lower. The
results in Fig. 2 is in accord with our instinct on this problem.
However, σ of a fracture is determined by the surface profile
and usually stays constant, which means if E changes, it not
only causes variances of Kn, but also leads to differences on
σ/E. Therefore, more investigation is needed to reveal the
mechanism and confirm the relationship between e and E for
microflow conditions.

4. Results and discussion

4.1 Flow field of fractures with random roughness

Neglect waviness of a fracture profile, then only roughness
exits on the fracture surface. Ideally, the profile of small-
scale roughness statically follows Gaussian distribution, and
roughness randomly scatters on the fracture surface (Zou et al.,
2015). Due to local aperture (Ex) relates with roughness, one
simple and reasonable way to create an ideal rough fracture
is to generate Ex randomly. With the value of E and σ, the
standard distribution function of Ex is shown as:

f (Ex) =
1√
2πσ

exp

(
− (Ex − E)

2

2σ2

)
(17)

In order to create a standard profile of ideal rough fractures,
a random sampling method is adopted and Ex is generated as
Eq. (18) shows. This approach guarantees Ex strictly follows
Gaussian distribution function mathematically.

Ex = E + σ ·
√
−2 ln ζ1 · cos (2πζ2) (18)
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Fig. 2. The microflow-modified empirical models for the hydraulic property (e/E) of single fractures. (a) Relationships between e/E and σ/E; (b)
relationships between e/E and Kn.
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Fig. 3. Rough fractures generated randomly (parameters of σ = 0.1, E = 30 and σ = 1.5, E = 30 are used to produce profiles with 100 sampling seeds, and
dimension will be later introduced with the meshing process).

where ζ1 and ζ2 are random numbers ranging from 0.0 to 1.0.
Fig. 3 shows randomly generated profiles of six rough frac-

tures. Ex fluctuates around E and the waveform is similar to
white noise. These profiles will be imported to the LBM code
to demonstration characters of microflow through ideal rough
fractures. Two sets of profiles show fractures of relatively
smooth and rough conditions. To eliminate the uncertainty,
three cases with the same parameter (σ and E) are generated

and simulated.
Firstly, the velocity field of one length of fractures from

0.004 m to 0.006 m is selected to display. As Fig. 4 shows,
flow patterns transform accordingly with the change of E.
With a larger aperture, streamlines are smooth and straight.
While as E decreases, streamlines near the peak of roughness
are torturous, and the velocity distribution is asymmetrical
along the x-direction. This is obvious for a rough fracture,
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(a) (b)

(c) (d)

Fig. 4. The flow pattern in fractures with different E, selecting case 1 as an example.
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Fig. 5. Velocity distribution profiles at x/L = 0.55. (a) a relatively smooth fracture; (b) a very rough fracture.

but for a smooth fracture, the alteration is not evident.
When we extract the sectional velocity profile at x/L =

0.55, it is clear to see that the velocity distribution differs
with σ and E (Fig. 5). For a relatively smooth fracture, the
dimensionless velocity (Vx/Vmax) near boundary increases
with the decrease of E, which means the microflow effect is
evident in smooth fractures, as shown by Fig. 5(a). However,
Vx/Vmax near the boundary decreases with the reduction on E
in Fig. 5(b), which is a very rough fracture case. Definitely, for
this case, the roughness effect has greater impacts on fracture

flow and the microflow effect is not evident. Comparing two
cases, it concludes that two important effects of the microflow
in rough fractures, the microflow effect and the roughness
effect, compete with each other when E changes.

As the flow is driven by pressure gradient, the flow rate
may sensitively response to slight differences on pressure
distribution. Fig. 6 presents pressure distribution profiles along
the flow direction of two kinds of fractures. For a relatively
smooth fracture, the pressure distribution curve is close to
linear and the deviation from the validation group is almost
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Fig. 6. Pressure distribution profiles along the flow direction in fractures with different E.

zero. In addition, the curve stays nearly constant as E changes.
For a rough fracture, the pressure distribution curve is also
nearly linear when E is large. With the decreasing of E, the
curve becomes torturous and nonlinear. The deviation is also
enlarged. The resultant stresses that the roughness effect is
enhanced by small apertures and definitely reduces flow rate
accordingly.

4.2 The hybrid role of E and σ

Based on the above analysis, we try to figure out the
influence of the microflow effect, which is directly controlled
by E, and the roughness effect, which is explicitly represented
by σ. As E decreases, the microflow effect is enhanced,
intuitively expressed by an increase on Kn. The roughness
effect is also strengthened by the decrease of E, expressing
with the increase of σ/E. These two effects compete with
each other and finally, the combined effects are reflected by
flow rate.

As Fig. 7 shows, results from numerical simulation and
modified empirical models both present two trends. For a

smooth fracture, e/E decreases with the increase of E (as Fig.
7(a) shows). All of the modified empirical models correctly
predict this trend and the one based on the Rasouli and
Hosseinian’s (2011) is very close to the numerical result. In
this case, the microflow effect dominates the flow behavior
and it abates when E is enlarged.

Nevertheless, for a rough fracture, the simulation result
indicates that e/E rises with the increase of E, and modified
models separate into two groups (see Fig. 7(b)). Most of the
modified models show a declining trend on the curve and the
data provided by them are very similar. However, as shown
by our numerical results, the ratio increases for the rough
fracture case. Only one modified model based on Rasouli and
Hosseinian’s provides a good prediction on this trend. Due to
parameters of their empirical model was established from data
of three-dimensional examples, it shows a larger predicting
value on e/E than ours. This finding indicates that as the
scaling down of E, the roughness effect is dominant on flow
in very rough fractures.

In order to achieve a comprehensive understanding of this
phenomenon, more cases are taken into our research. With σ
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Fig. 7. Comparison of e/E between the numerical result and modified empirical models (with cases of both very rough and relatively smooth fractures).
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Fig. 8. The relationship between e, E, and σ under the condition of microflow in rough fractures.

varies from 10 µm to 150 µm and E varies from 500 µm
to 2000 µm, additional 36 examples are simulated to make
compensation to a more detailed relationship between e/E,
σ and E. Both a 2D graph and a 3D diagram are shown
in Fig. 8. The trend of the relationship between e/E and E
is changeable. For rougher cases with high σ, the trend is
downward, but for smoother cases, the trend is upward. There
also exists an equilibrium point between the microflow effect
and the roughness effect, when the value of σ is close to 60
µm. After interpolating the missing data, Fig. 8(b) presents a
full scene of the relationship quantitatively.

5. Summary
The behavior of microflow through rough fractures is

affected both by the microflow effect and the roughness effect.

To obtain a better understanding of this issue, analytical
research is conducted and a lattice Boltzmann method code
is used to simulate the microflow through 2D fractures.

Theoretical analysis roughly shows the relationship be-
tween e/E, σ/E and Kn, based on modified forms of
previous empirical models which already contain roughness
effect. With the change of E, competitive relationship between
the microflow effect and the roughness effect is shown ana-
lytically.

Numerical investigations are carried out on artificially gen-
erated 2D fractures with random roughness following Gaussian
distribution. Through analysis of the flow field, different
modes of velocity change are shown, which is caused by
the scaling down of E. Numerical results also show different
trends on the relationship between e/E and E for rough-
fracture cases and smooth-fracture cases. Further research
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shows a clear pattern on the relationship between σ, E, and
e/E. For rough cases, e/E rises with the increase of E, but
for relatively smooth cases, e/E declines with the increase of
E. Equilibrium point is also found from the simulation, whose
value of σ is approximately 60 µm. The result gives guidance
on the prediction of e and clearly reveals the mechanism of
the microflow effect and the roughness effect on microflow
through rough fractures. However, due to the simplification
of 2D models, investigations based on 3D fractures is needed
when considering engineering application.

Nomenclature
Q̃ = Flow rate of the fracture, m3/s
µ = Dynamic viscosity, Pa·s
ν = Kinematic viscosity, m2/s
e = Hydraulic aperture, m
er = Modified aperture with roughness, m
E = Mechanical aperture, m
Ex = Local aperture, m
p = Pressure, Pa
∇p = Pressure gradient, Pa/m
σ = Standard deviation of the aperture, m
λ = Mean free path of fluid molecules, m
L = Characteristic length, m
Kn = Knudsen number (≡ λ/L)
K̂n = Kn defined by hydraulic aperture
Kn = Mean Kn of the fracture
ρ = Fluid density, kg/m3

u = Flow velocity, m/s
ei = Discretized velocity at direction i, m/s
fi = Discrete particle velocity distribution function
feqi = Discrete local equilibrium velocity distribution func-

tion
r = Position, m
∆x = Space step, m
t = Time, s
∆t = Time step, s
c = Characteristic speed of lattice (≡ ∆x/∆t), m/s
NE = Number of grids for mechanical aperture
ζ = Random number ranging between 0.0 and 1.0
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Appendix

Table A1. Physical parameters for the simulation.

Parameters Physical value

Grid step 1×10−5 m

Time step 1×10−5 s

Fluid density 0.65 kg/m3

Kinematic viscosity 1.80×10−5 m2/s

Pressure gradient 2 Pa/m

Table A2. The expression of empirical models for hydraulic aperture.

References Expressions

Patir and Cheng, 1978 e
E

=
[
1− 0.9 exp

(
−0.56E

σ

)] 1
3

Renshaw, 1995 e
E

=
(
1 + σ2

E2

)− 1
2

Zimmerman and Bodvarsson, 1996 e
E

=
(
1− 1.5 σ

2

E2 + . . .
) 1

3

Rasouli and Hosseinian, 2011 e
E

=
(
1− 2.25 σ

E

) 1
3


